
Kapur - Peierls and Wigner  R-matrix theories for the Dirac equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 6125

(http://iopscience.iop.org/0305-4470/29/18/037)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 6125–6141. Printed in the UK

Kapur–Peierls and Wigner R-matrix theories for the Dirac
equation

Rados law Szmytkowski† and J̈urgen Hinze‡
† Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Wita Stwosza 57,
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Abstract. An R-matrix theory for the Dirac equation is shown to exist in spite of
incompleteness of a relativisticR-matrix basis on the reaction surface, a phenomenon which
does not occur in the non-relativistic case. The theory is constructed for the most general
boundary conditions imposed on expansion basis functions. It is shown that the incompleteness
of the expansion basis on the reaction surface results in a matrix correction appearing in the
eigenfunction expansion of theR-matrix. The correction vanishes in the non-relativistic limit.
The approach is applied to the relativistic generalizations of the Kapur–Peierls and Wigner
resonance reaction theories.

1. Introduction

The Kapur–Peierls [1] and Wigner [2]R-matrix resonance reaction theories are among
the foundations of the quantum scattering theory. Therefore, it might be expected that all
mathematical questions of practical importance concerning both theories have been already
answered, leaving only some open problems of interest for pure mathematicians. However,
this is not the case: there is an important point in both theories which has not been properly
resolved by their originators. While this omission has fortunately caused no problems
for non-relativistic versions of the theories, it has been a source of errors in subsequent
generalizations of the Wigner theory to systems described by the Dirac equation [3, 4].

Both theories belong to the family of finite-volume eigenfunction-expansion procedures
generally referred to asR-matrix methods. In these approaches the configuration space of
a considered system is divided into internal and external regions, separated by a reaction
surface. Generally, in the internal region all particles are close together and interact strongly.
The external region is the remainder of the configuration space. In the internal region one
generates a denumerable set of basis functions by solving an eigenvalue problem consisting
of a wave equation with a Hamiltonian describing the system under consideration, but
with physical scattering boundary conditions replaced by artificial conditions imposed on
solutions at the reaction surface. Once the set of eigenfunctions to this boundary-value
problem has been found, a wavefunction describing the system is expanded in this set in
the internal region. ParticularR-matrix procedures differ among themselves with specific
choices of the boundary conditions.
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An inherent problem of any eigenfunction-expansion method is a question about
completeness of the expansion basis. If the basis is generated by a Hermitian eigenvalue
problem, as in the Wigner theory, its completenessin the internal regionis guaranteed [5].
The eigenvalue problem used in the Kapur–Peierls theory was non-Hermitian but Peierls
[6] showed later that also in that case the basis was completein the internal region. But an
immediate question arises: is the expansion basis completeon the reaction surface? The
same question may be formulated in an alternative way: does an eigenfunction expansion
of the scattering wavefunction converge to that functionon the reaction surface? Answers
to these by no means trivial questions are of fundamental importance for the theories which
in their widely known forms rely on the assumption that they are positive†.

Kapur and Peierls [1] did understand the problem and to cope with it introducedad
hoc in a rather non-rigorous way an auxiliary functionχ which Brown [8] ingeniously
called later the ‘Peierls demon’. The functionχ , which we shall call hereafter the Kapur–
Peierls function, was assumed to vanish identically in the interior of the reaction volume,
to vanish on the reaction surface but to have there a non-vanishing derivative. (For a
present-day physicist, the properties of the Kapur–Peierls function remind one of generalized
functions.) In turn, in their paper originating theR-matrix theory Wigner and Eisenbud [2]
mentioned that under some simplifying restrictions they were able to prove convergence of
the eigenfunction expansion on the surface but did not present a proof. Later the subject did
not attract further attention [7, 9–12] although a related problem of non-uniform convergence
of a derivative series was occasionally discussed [7, 9, 13–16].

Complications arose when Rosenthal [17] pointed out that the relativistic generalization
of the Wigner theory given by Goertzel [3] had been incorrect. Rosenthal indicated that
in the relativistic case, a fixed-boundary-conditionR-matrix basis set generated in the
reaction volume by a Hermitian boundary value problem wasnot complete on the reaction
surface. This observation led him to the conclusion that anR-matrix formulation of the
Dirac equation was not possible [17, 18]. Shortly afterwards Halderson [19], not referring
explicitly to Rosenthal’s paper, questioned the validity of this conclusion and attempted
to prove that the theory could be constructed. However, the proof he presented was non-
rigorous and correct only for a very specific choice of a boundary condition used to generate
anR-matrix basis.

Recently, we have reinvestigated the relativistic generalization of the WignerR-
matrix theory for electron–atom scattering and rediscovered Rosenthal’s finding about
incompleteness of the relativisticR-matrix basis on the reaction surface. However, we
have been able to show that in spite of this incompleteness the relativisticR-matrix theory
does exist. Preliminary results of our studies have been presented in a recent paper [20] in
the context of electron–atom scattering theory‡. Here we generalize our previous results by
admitting more general boundary conditions on the reaction surface. We consider particular
applications of our approach to the relativistic generalizations of the Kapur–Peierls and
Wigner theories.

† See, however, two papers Wigner E P 1946Phys. Rev.70 15 andPhys. Rev.70 606 and also section V.3a of
[7] where the possibility that the eigenfunction expansion did not converge to the wavefunction on the boundary
was admitted.
‡ A comprehensive bibliography of applications of the relativisticR-matrix theory to atomic physics is contained
in [20]. There we also showed that results of numerical calculations performed thus far in atomic physics in the
framework of the relativisticR-matrix theory fortuitously were not afflicted by the error in Chang’s presentation
of the theory [4].
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2. Preliminaries

2.1. General considerations

We consider a scattering process governed by the Dirac equation[
Ĥ − E

]
9(E, r) = 0. (1)

The local HamiltonianĤ has the form

Ĥ = −ich̄α · ∇ + βmc2 + V (r) (2)

with the matricesα and β defined as usual [21], whileE is a prescribed real energy of
a projectile including its rest energymc2. We assume that the three-dimensional physical
space is divided into two parts separated by a spherical shellS (called hereafter areaction
surface) of radiusρ centred at the origin of the coordinate system. In theinner regionV
(or reaction volume), r 6 ρ, the real local spin-independent potentialV may be non-central
and arbitrarily complicated while in theouter region,r > ρ, the potentialV is assumed to
vanish (a generalization of the theory to potentials with Coulomb tails is not difficult). Our
goal is to constructR-matrix theories for equation (1).

Before proceeding further, we establish a notational convention. In the following,r is
the position vector of a point in the three-dimensional physical space andn = r/r is a unit
vector directed alongr. If the pointr lies on the surfaceS, i.e. r = ρ, we shall denote this
using the symbolρ instead ofr. Integration over the reaction volume will be denoted by
〈|〉 and integration over the reaction surface by(|). Thus for two arbitrary four-component
functionsf andg we have

〈f |g〉 ≡
∫

V
d3rf +(r)g(r) (f |g) ≡

∫
S

d2ρf +(ρ)g(ρ) (3)

where the superscript+ means the Hermitian conjugation. Whenever integration over
angular variables occurs, we shall denote this explicitly by writing

∫
4π d2n . . . .

Any particular solution to equation (1) may be expanded in a basis formed by two-
component spherical spinors�±κµ

9(E, r) =
∑
κµ

1

r

(
Pκµ(E, r)il�κµ(n)

Qκµ(E, r)il+1�−κµ(n)

)
. (4)

Hereκ = (2j + 1)(l − j) is a combined parity and the total angular momentum quantum
number andµ is a quantum number of the projection of the total angular momentum onto
a quantization axis. The factors il and il+1 have been explicitly included in the expansion
because the functions il�κµ and il+1�−κµ have desirable time-reversal properties [9, 22, 23]

(−iσ2K̂) il�κµ(n) = (−)j−µ il�κ,−µ(n) (5)

(−iσ2K̂) il+1�−κµ(n) = (−)j−µ il+1�−κ,−µ(n) (6)

where

σ2 =
(

0 −i
i 0

)
is the second Pauli matrix and̂K is the complex conjugation operator.

It will be convenient to use a composite indexγ = (κµ) denoting a scattering channel
and to define the channelrow matricesΘ andΘ̃ with elements

2γ (n) =
(

il�κµ(n)
0

)
2̃γ (n) =

(
0

il+1�−κµ(n)

)
. (7)
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Utilizing these functions we may rewrite the expansion (4) in the form more suitable for
future applications

9(E, r) =
∑
γ

[
2γ (n)

Pγ (E, r)

r
+ 2̃γ (n)

Qγ (E, r)

r

]
= Θ(n)

P(E, r)
r

+ Θ̃(n)
Q(E, r)
r

(8)

whereP(E, r) and Q(E, r) are column matrices with elements respectivelyPγ (E, r) and
Qγ (E, r) and satisfy the radial equations

−ch̄
[

dQ(E, r)
dr

− K
r

Q(E, r)
]

+ [
(mc2 − E)I + V(r)

]
P(E, r) = 0 (9)

ch̄

[
dP(E, r)

dr
+ K
r

P(E, r)
]

+ [
(−mc2 − E)I + V(r)

]
Q(E, r) = 0. (10)

HereK is a diagonal matrix of{κγ }, I is a unit matrix while

V(r) =
∫

4π
d2nΘ+(n)V (r)Θ(n) =

∫
4π

d2nΘ̃+(n)V (r)Θ̃(n) (11)

is a Hermitian potential matrix which couples the channels.

2.2. TheR-matrix

Let9(E, r) and9 ′(E, r) be two particular solutions to the Dirac equation (1) corresponding
to the same real energyE. Applying the Gauss integration theorem one has

〈Ĥ9 ′|9〉 − 〈9 ′|Ĥ9〉 = (9 ′| ich̄n · α9). (12)

In virtue of the reality ofE the left-hand side of this equation vanishes. Performing the
surface integration on the right-hand side we get

0 = (9 ′| ich̄n · α9) = ch̄
[
P

′+(E, ρ)Q(E, ρ)− Q
′+(E, ρ)P(E, ρ)

]
. (13)

This equation implies the following linear homogeneous relation betweenP(E, ρ) and
Q(E, ρ)

− h̄2

2mρ
R−1(E, ρ)P(E, ρ)+ ch̄Q(E, ρ) = 0 (14)

whereR(E, ρ) is a Hermitian matrix. (Hermicity ofR(E, ρ) follows immediately from
substitution of equation (14) into equation (13).) The constant factors in equation (14) have
been chosen for future convenience. In the more general notation the boundary condition
(14) is∫

4π
d2n′

[
− h̄2

2mρ
Θ(n)R−1(E, ρ)Θ+(n′)+ ich̄δ(n − n′)

1 + β

2
n′ · α

]
9(E,ρ′) = 0

on S. (15)

We observe that equation (15) is not a unique way of writing the boundary condition it
expresses since equation (14) may be rewritten as

2mρc2R(E, ρ)Q(E, ρ)− ch̄P(E, ρ) = 0 (16)
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where again the constant factors have been chosen for future convenience. This shows that
the boundary condition implied by equation (15) may also be written in the form∫

4π
d2n′

[
2mρc2Θ̃(n)R(E, ρ)Θ̃+(n′)+ ich̄δ(n − n′)

1 − β

2
n′ · α

]
9(E,ρ′) = 0

on S. (17)

We have already seen that the matrixR(E, ρ) is Hermitian. Now we shall prove that
it has an additional symmetry property. To show this we observe that the HamiltonianĤ

defined by equation (2) is invariant under the time-reversal transformationT̂ = −i62K̂,
where62 is the second Dirac spin matrix, and that the energyE is real. This implies that if
the function9 given by the expansion (4) is a solution to equation (1) then its time-reversed
conjugate

T̂ 9(E, r) =
∑
κµ

(−)j−µ 1

r

(
P ∗
κµ(E, r)i

l�κ,−µ(n)
Q∗
κµ(E, r)i

l+1�−κ,−µ(n)

)
(18)

where the asterisk denotes the complex conjugation, is also a solution to equation (1)
corresponding to the same energyE. This means that the radial components of the latter
function must satisfy the relation (14) which gives

Rκµ;κ ′µ′(E, ρ) = (−)(j−j ′)−(µ−µ′)R∗
κ,−µ;κ ′,−µ′(E, ρ) (19)

or after utilizing the Hermicity property ofR(E, ρ)

Rκµ;κ ′µ′(E, ρ) = (−)(j−j ′)−(µ−µ′)Rκ ′,−µ′;κ,−µ(E, ρ). (20)

2.3. The scattering matrix

Although the matrixR(E, ρ) contains all the information about processes taking place in
the reaction volume, the central role in the theory is played by thescattering(or collision)
matrix S(E). Consider the particular solution9κµ(E, r) to the Dirac equation (1) that, in
the external region, contains an incoming wave in channelκµ and outgoing waves in all
channels

9κµ(E, r) = N
1

r

(
Iκ(E, r)il�κµ(n)

Ĩκ (E, r)il+1�−κµ(n)

)
−

∑
κ ′µ′

N
1

r

(
Oκ ′(E, r)il

′
�κ ′µ′(n)

Õκ ′(E, r)il
′+1�−κ ′µ′(n)

)
Sκ ′µ′,κµ(E) for r > ρ. (21)

The factor

N = 1√
2c

4

√
E +mc2

E −mc2
(22)

normalizes the incoming and outgoing partial waves to unit flux crossing any sphere centred
at the origin. The radial functionsIκ , Oκ , Ĩκ and Õκ are related to the Riccati–Hankel
functionsĥ(∓)l [24]

Iκ(E, r) = −iĥ(−)l (kr)
r→∞−→ + exp

[
−i

(
kr − πl

2

)]
(23)

Oκ(E, r) = +iĥ(+)l (kr)
r→∞−→ + exp

[
i

(
kr − πl

2

)]
(24)



6130 R Szmytkowski and J Hinze

Ĩκ (E, r) = ±iε

√
E −mc2

E +mc2
ĥ
(−)
l±1(kr)

r→∞−→ −iε

√
E −mc2

E +mc2
exp

[
−i

(
kr − πl

2

)]
(25)

Õκ(E, r) = ∓iε

√
E −mc2

E +mc2
ĥ
(+)
l±1(kr)

r→∞−→ +iε

√
E −mc2

E +mc2
exp

[
i

(
kr − πl

2

)]
(26)

whereε = +1 for E > +mc2 andε = −1 for E < −mc2 and

k =
√
(E −mc2)(E +mc2)

ch̄
(27)

is a wave number of the scattered particle. In equations (25) and (26) the upper sign
should be taken forκ < 0 and the lower one forκ > 0. The set of probability amplitudes
{Sκ ′µ′,κµ(E)} forms the scattering matrixS(E).

An arbitrary solution to equation (1) at energyE may be expanded in the set{9γ }
9(E, r) =

∑
γ

9γ (E, r)Xγ (E) (28)

where {Xγ (E)} are the expansion coefficients. Introducing a column matrixX(E) with
elementsXγ (E) and diagonal matricesI(E, r), O(E, r), Ĩ(E, r) and Õ(E, r) with
diagonal elements defined by equations (23)–(26), in theexternal region we may rewrite
the expansion (28) in the form

9(E, r) = Θ(n)
N

[I(E, r)− O(E, r)S(E)]
r

X(E)

+Θ̃(n)
N

[Ĩ(E, r)− Õ(E, r)S(E)]
r

X(E) for r > ρ. (29)

Consider now two solutions9(E, r) and9 ′(E, r) to the Dirac equation (1) corresponding
to the same real energyE. We have shown in the previous subsection that on the reaction
surfaceS their radial parts must satisfy the relation

P
′+(E, ρ)Q(E, ρ)− Q

′+(E, ρ)P(E, ρ) = 0. (30)

In our case

P(E, ρ) = [I(E, ρ)− O(E, ρ)S(E)] X(E) (31)

and

Q(E, ρ) = [Ĩ(E, ρ)− Õ(E, ρ)S(E)] X(E). (32)

On substituting equations (31) and (32) to equation (30) and utilizing the Hermitian-
conjugation relations

I+(E, r) = O(E, r) O+(E, r) = I(E, r) (33)

Ĩ+(E, r) = Õ(E, r) Õ+(E, r) = Ĩ(E, r) (34)

and the Wrónskian relation

O(E, r)Ĩ(E, r)− I(E, r)Õ(E, r) = −2iε

√
E −mc2

E +mc2
I (35)

we obtain

S+(E)S(E) = I (36)
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which means that the matrixS(E) is unitary. An argumentation following essentially the
one presented at the end of the previous subsection shows that the matrixS(E) has an
additional symmetry property

Sκµ;κ ′µ′(E) = (−)(j−j ′)−(µ−µ′)Sκ ′,−µ′;κ,−µ(E). (37)

Finally, a relation between the matricesS(E) andR(E, ρ) may be established. Substituting
equations (31) and (32) in condition (14) we obtain

S(E) = O−1(E, ρ)[I − R(E, ρ)L(E, ρ)]−1[I − R(E, ρ)L+(E, ρ)]I(E, ρ)
= I(E, ρ)[I − L+(E, ρ)R(E, ρ)][ I − L(E, ρ)R(E, ρ)]−1O−1(E, ρ) (38)

where

L(E, ρ) =
(

2mρc

h̄

)
Õ(E, ρ)O−1(E, ρ). (39)

3. Construction and properties of an expansion basis

In the following we shall need a set of functions{8bK}

8bK(r) = Θ(n)
FbK(r)

r
+ Θ̃(n)

GbK(r)

r
(40)

that are solutions to the equation[
Ĥ − EbK

]
8bK(r) = 0 in V (41)

augmented by a homogeneous boundary condition∫
4π

d2n′
[
− h̄2

2mρ
Θ(n)bΘ+(n′)+ ich̄δ(n − n′)

1 + β

2
n′ · α

]
8bK(ρ

′) = 0

on S (42)

or equivalently∫
4π

d2n′
[

2mρc2Θ̃(n)b−1Θ̃+(n′)+ ich̄δ(n − n′)
1 − β

2
n′ · α

]
8bK(ρ

′) = 0

on S. (43)

b is a square, in general non-diagonal and possibly non-Hermitian, matrix. We note that
in general the eigenvalues{EbK} will be complex. In terms of radial column matrices,
equations (42) and (43) may be respectively rewritten as

− h̄2

2mρ
bFbK(ρ)+ ch̄GbK(ρ) = 0 (44)

and

2mρc2b−1GbK(ρ)− ch̄FbK(ρ) = 0. (45)

In the very special case when the matrixb is proportional to a unit matrix,b = bI,
equations (42) and (43) simplify and become

1 + β

2

[
− h̄2

2mρ
b + ich̄n · α

]
8bK(ρ) = 0 on S (46)

1 − β

2

[
2mρc2b−1 + ich̄n · α

]
8bK(ρ) = 0 on S (47)
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since

Θ(n)Θ+(n′) = δ(n − n′)
1 + β

2
(48)

and

Θ̃(n)Θ̃+(n′) = δ(n − n′)
1 − β

2
. (49)

The boundary condition (46) was used by Goertzel [3] and Halderson [19]. In what follows,
we shall not restrict ourselves to this special case but shall consider the most general situation
whenb is non-diagonal.

A convenient way to deal with the boundary condition (42)–(45) is to write it in the
form

L̂b8bK(ρ) = 0 on S. (50)

The most general form of the integral kernelLb(r, r
′) of the relativistic Bloch surface

operator L̂b [25, 26] corresponding to the Hamiltonian̂H and the boundary condition
expressed by equations (42) and (43) is

Lb(r, r
′) = η

δ(r − ρ)δ(r ′ − ρ)

ρ2

[
− h̄2

2mρ
Θ(n)bΘ+(n′)+ ich̄δ(n − n′)

1 + β

2
n′ · α

]
+(1 − η)

δ(r − ρ)δ(r ′ − ρ)

ρ2

×
[

2mρc2Θ̃(n)b−1Θ̃+(n′)+ ich̄δ(n − n′)
1 − β

2
n′ · α

]
(51)

whereη is an arbitrary real number. This specific choice of real coefficients,η and 1− η,
ensures that the extended (in general non-Hermitian) Hamiltonian

Ĥb = Ĥ + L̂b (52)

has the property

Ĥ+
b = Ĥb+ . (53)

A proof is simple and utilizes the equalities

Ĥ+ = Ĥ + ich̄δ(r − ρ)n · α (54)

and

L+
b (r

′, r) = Lb+(r, r′)− ich̄δ(r − r′)δ(r − ρ)n · α (55)

the first of which follows from equation (12), and the latter from equation (51) and the
anticommutation relationαβ + βα = 0. With the operatorĤb we may rewrite the
eigenvalue problem constituted by equation (41) and the boundary condition (50) in the
compact form[

Ĥb − EbK

]
8bK(r) = 0 in V . (56)

Since we have admitted boundary conditions such that the extended HamiltonianĤb

may be non-Hermitian, in general the functions{8bK} will not be mutually orthogonal and
we shall need a set of complementary biorthonormal functions{8⊥

bK} which are solutions
to the equation[

Ĥ+
b − E∗

bK

]
8⊥

bK(r) = 0 in V . (57)
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Because of the property (53) of the extended HamiltonianĤb the sets{8⊥
bK} and {8b+K}

coincide, as do the sets{E∗
bK} and {Eb+K}. Moreover, it is always possible to index the

functions in such a way that

8⊥
bK(r) = 8b+K(r) E∗

bK = Eb+K (58)

and henceforth we shall take these relations for granted.
In the following we shall assume† that the functions{8bK} form a complete set spanning

the interior of the reaction volume,V \ S. The corresponding closure relation is∑
K

8bK(r)8
+
b+K(r

′) = δ(r − r′) for r, r′ ∈ V \ S. (59)

This set, however, isnot complete on the surfaceS because of the restrictive condition (50)
obeyed by the functions{8bK}. If the point r′ lies on the surfaceS (i.e. r′ = ρ′), then
instead of equation (59) we assume (cf equations (40) and (44))∑
K

8bK(r)8
+
b+K(ρ

′) = δ(r − ρ)

ρ2

[
Θ(n)+

(
h̄

2mρc

)
Θ̃(n)b

]
×Ab(ρ)

[
Θ+(n′)+

(
h̄

2mρc

)
bΘ̃+(n′)

]
for r ∈ V (60)

where the square matrixAb(ρ), defined formally by the relation∑
K

FbK(r)F+
b+K(ρ) = Ab(ρ)δ(r − ρ) r 6 ρ (61)

is to be determined.

4. The eigenfunction expansion of the solution to the Dirac equation

An idea underlying theR-matrix theories is to expand the wave function9 in the interior of
the reaction volume,V \ S, in the complete set of the eigenfunctions{8bK} of the operator
Ĥb ,

9(E, r) =
∑
K

8bK(r)CbK(E) in V \ S (62)

with the expansion coefficients{CbK(E)} formally given by

CbK(E) = 〈8b+K |9〉. (63)

To find the coefficients, we add to both sides of equation (1) the termL̂b9(E, r), premultiply
the resulting equation by8+

b+K(r)

8+
b+K(r)

[
Ĥb − E

]
9(E, r) = 8+

b+K(r)L̂b9(E, r) (64)

postmultiply the Hermitian conjugate of equation (57) by9(E, r),([
Ĥ+

b − E∗
bK

]
8b+K(r)

)+
9(E, r) = 0 (65)

subtract equation (65) from equation (64) and integrate the result over the reaction volume
V, obtaining

[EbK − E] 〈8b+K |9〉 = 〈8b+K |L̂b9〉 (66)

† It is possible that this assumption restricts a class of admissible matricesb. Therefore henceforth we assume
that b is such that the assumption is satisfied.
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whence

9(E, r) =
∑
K

8bK(r)
〈8b+K |L̂b9〉
EbK − E

in V \ S (67)

and, because of the continuity of9,

9(E,ρ) = lim
r→ρ−

∑
K

8bK(r)
〈8b+K |L̂b9〉
EbK − E

on S. (68)

Projecting this equation onto the channel matricesΘ andΘ̃ and performing the integration
in the numerator, we obtain forr < ρ

P(E, r) = h̄2

2mρ

∑
K

FbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(69)

Q(E, r) = h̄2

2mρ

∑
K

GbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(70)

and forr = ρ

P(E, ρ) = h̄2

2mρ
lim
r→ρ−

∑
K

FbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(71)

Q(E, ρ) = h̄2

2mρ
lim
r→ρ−

∑
K

GbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (72)

Next, we define the matrixRb(E, ρ) as

Rb(E, ρ) = h̄2

2mρ
lim
r→ρ−

∑
K

[
ρ

∫
4π d2nΘ+(n)8bK(r)

] [
ρ

∫
4π d2n′8+

b+K(ρ
′)Θ(n′)

]
EbK − E

. (73)

After performing the integrations, equation (73) simplifies to the form

Rb(E, ρ) = h̄2

2mρ
lim
r→ρ−

∑
K

FbK(r)F+
b+K(ρ)

EbK − E
. (74)

Comparing equations (71) and (74) we obtain the following relation between the large and
small components of the radial functions in different channels

P(E, ρ) = Rb(E, ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (75)

On substituting this equation to equation (14) we obtain the relation between the matrices
R(E, ρ), b andRb(E, ρ)

R−1(E, ρ) = b + R−1
b (E, ρ) (76)

which implies R(E, ρ) = R0(E, ρ). Moreover, in virtue of Hermicity of the matrix
R(E, ρ) we have

R+
b (E, ρ) = Rb+(E, ρ). (77)

Once the matrixRb(E, ρ) has been found, one may use equations (76) and (38) to obtain
the scattering matrixS(E). Another possibility is to use directly the equation

S(E)=O−1(E, ρ)
{
I−Rb(E, ρ)

[
L(E, ρ)−b

]}−1 {
I−Rb(E, ρ)

[
L+(E, ρ)−b

]} I(E, ρ)
= I(E, ρ) {I − [

L+(E, ρ)− b
] Rb(E, ρ)

}
× {

I − [
L(E, ρ)− b

] Rb(E, ρ)
}−1 O−1(E, ρ) (78)
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which may be obtained from equation (38) after simple manipulations.
The goal of our further considerations will be to find a tractable form ofRb(E, ρ). At

first we shall show that the operations limr→ρ− and
∑

K in equations (68) and (71)–(74) in
general donot commute. This fact was not recognized before and was a source of errors
in previous presentations of the WignerR-matrix theory for systems described by the Dirac
equation [3, 4]. We introduce a new function

9b(E, r) = Θ(n)
Pb(E, r)

r
+ Θ̃(n)

Qb(E, r)

r
(79)

defined by the eigenfunction expansion

9b(E, r) =
∑
K

8bK(r)
〈8b+K |L̂b9〉
EbK − E

(80)

in the whole reaction volumeV including the surfaceS. In particular,

9b(E,ρ) =
∑
K

8bK(ρ)
〈8b+K |L̂b9〉
EbK − E

on S. (81)

Therefore, from equations (67) and (80) we have

9b(E, r) = 9(E, r) in V \ S (82)

but equations (50) and (81) imply

L̂b9b(E,ρ) = 0 on S. (83)

The difference

χb(E, r) = 9(E, r)−9b(E, r) (84)

is the Kapur–Peierls function for the problem under consideration. Equation (82) shows that
it vanishes identically in the interior of the reaction volume. Projection of equations (80)
and (81) onto the channel matrices gives forr < ρ

Pb(E, r) = h̄2

2mρ

∑
K

FbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(85)

Qb(E, r) = h̄2

2mρ

∑
K

GbK(r)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(86)

and forr = ρ

Pb(E, ρ) = h̄2

2mρ

∑
K

FbK(ρ)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(87)

Qb(E, ρ) = h̄2

2mρ

∑
K

GbK(ρ)F+
b+K(ρ)

EbK − E

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (88)

Equations (85)–(88) are to be compared with equations (69)–(72). Obviously, we have

Pb(E, r) = P(E, r) Qb(E, r) = Q(E, r) for r < ρ (89)

but

− h̄2

2mρ
bPb(E, ρ)+ ch̄Qb(E, ρ) = 0 at r = ρ. (90)
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In the next step, we define the matrixRb(E, ρ) by the relation

Rb(E, ρ) = h̄2

2mρ

∑
K

[
ρ

∫
4π d2nΘ+(n)8bK(ρ)

] [
ρ

∫
4π d2n′8+

b+K(ρ
′)Θ(n′)

]
EbK − E

(91)

which may be reduced to the form

Rb(E, ρ) = h̄2

2mρ

∑
K

FbK(ρ)F+
b+K(ρ)

EbK − E
. (92)

From equations (87) and (92) it is seen that the matrixRb(E, ρ) relatesPb(E, ρ) to P(E, ρ)
andQ(E, ρ) according to the formula

Pb(E, ρ) = Rb(E, ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (93)

Note the difference between equations (71), (73)–(75) and equations (87), (91)–(93) defining
the matricesRb(E, ρ) andRb(E, ρ), respectively.

To find the relation between the matricesRb(E, ρ) and Rb(E, ρ), we derive a
differential equation satisfied by the function9b in the reaction volumeV. Acting on
both sides of equation (80) with the operatorĤb −E and utilizing equations (56) and (83),
we get [

Ĥ − E
]
9b(E, r) =

∑
K

8bK(r)〈8b+K |L̂b9〉. (94)

By virtue of equation (60) the above equation may be further transformed to the form[
Ĥ − E

]
9b(E, r) = h̄2

2mρ

δ(r − ρ)

ρ

[
Θ(n)+

(
h̄

2mρc

)
Θ̃(n)b

]
×Ab(ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (95)

Then, projecting equation (95) onto the channel matricesΘ andΘ̃ we find

−ch̄
[

dQb(E, r)

dr
− K
r

Qb(E, r)

]
+ [
(mc2 − E)I + V(r)

]
Pb(E, r)

= ch̄

(
h̄

2mρc

)
δ(r − ρ)Ab(ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(96)

ch̄

[
dPb(E, r)

dr
+ K
r

Pb(E, r)

]
+ [(−mc2 − E

)
I + V(r)

]
Qb(E, r)

= ch̄

(
h̄

2mρc

)2

δ(r − ρ)bA b(ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
. (97)

Integration of both sides of equations (96) and (97) over the intervalρ − ε 6 r 6 ρ, (ε →
0+), gives

−ch̄
[
Qb(E, ρ)− Q(E, ρ)

]
= ch̄

(
h̄

2mρc

)
Ab(ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(98)

ch̄
[
Pb(E, ρ)− P(E, ρ)

]
= ch̄

(
h̄

2mρc

)2

bA b(ρ)

[(
2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
(99)
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which together with equation (90) constitute a set of algebraic equations for the square
matrix Ab(ρ) and the column matricesPb(E, ρ) andQb(E, ρ). The solution to this system
is

Ab(ρ) = (2mρc/h̄)2I
b2 + (2mρc/h̄)2I

(100)

Pb(E, ρ) = (2mρc/h̄)I
b2 + (2mρc/h̄)2I

[(
2mρc

h̄

)
P(E, ρ)+ bQ(E, ρ)

]
(101)

Qb(E, ρ) = b
b2 + (2mρc/h̄)2I

[(
2mρc

h̄

)
P(E, ρ)+ bQ(E, ρ)

]
(102)

provided the matrixb2 + (2mρc/h̄)2I is non-singular. From equations (75), (93) and (101),
after simple transformations, we obtain the desired relation between the matricesRb(E, ρ)

andRb(E, ρ)

Rb(E, ρ) = Rb(E, ρ)− b
b2 + (2mρc/h̄)2I

(103)

and the explicit form of the matrixRb(E, ρ)

Rb(E, ρ) = h̄2

2mρ

∑
K

FbK(ρ)F+
b+K(ρ)

EbK − E
− b

b2 + (2mρc/h̄)2I
. (104)

This result shows that indeed in the relativistic case the operations limr→ρ− and
∑

K in
equations (68) and (71)–(74) in general do not commute. An analytically solvable example
illustrating this phenomenon has been presented in [20] appendix B. We note also that in
the non-relativistic limit the differenceRb(E, ρ)− Rb(E, ρ) vanishes.

Another result following from the above considerations is an explicit form of the Kapur–
Peierls functionχb(E, r). From equation (82) we have

χb(E, r) ≡ 0 in V \ S (105)

the result already stated earlier, while equations (84) and (98)–(100) give

χb(E,ρ) = − 1

ρ

[
Θ(n)b −

(
2mρc

h̄

)
Θ̃(n)

]
I

b2 + (2mρc/h̄)2I

×
[(

2mρc

h̄

)
Q(E, ρ)− bP(E, ρ)

]
on S. (106)

We observe that in generalχb(E,ρ) 6= 0, i.e. Pb(E, ρ) 6= P(E, ρ) and Qb(E, ρ) 6=
Q(E, ρ). There is, however, an exceptional case when for a given energyE the equalities
Pb(E, ρ) = P(E, ρ) and Qb(E, ρ) = Q(E, ρ) hold simultaneously. This happens if and
only if b = R−1(E, ρ). In such a case the energyE coincides with one of the eigenvalues,
sayEbK , of the extended Hamiltonian̂Hb and9 = 9b = 8bK .

Equation (100) allows us to rewrite equation (60), the ‘incompleteness’ relation on the
surfaceS, in the form∑
K

8bK(r)8
+
b+K(ρ

′) = δ(r − ρ)

ρ2

[
Θ(n)+

(
h̄

2mρc

)
Θ̃(n)b

]
(2mρc/h̄)2I

b2 + (2mρc/h̄)2I

×
[
Θ+(n′)+

(
h̄

2mρc

)
bΘ̃+(n′)

]
. (107)
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Two limiting cases may be considered. Ifb = 0 (in other words, if the functionsGbK

are forced to vanish atr = ρ), then equations (48) and (107) show that the set{80K} is
complete onS in the subspace ofupper components∑

K

80K(r)8
+
0K(ρ

′) = δ(r − ρ′)
1 + β

2
. (108)

In this case from equations (101) and (102) we haveP0(E, ρ) = P(E, ρ) andQ0(E, ρ) = 0
and consequently

1 + β

2
90(E, ρ) = 1 + β

2
9(E, ρ)

1 − β

2
90(E, ρ) = 0. (109)

In turn, if b = ∓∞ (i.e. if FbK(ρ) = 0), then equations (49) and (107) imply∑
K

8∓∞K(r)8
+
∓∞K(ρ

′) = δ(r − ρ′)
1 − β

2
(110)

i.e. the set{8∓∞K} is complete onS in the subspace oflower components. In this case
we haveQ∓∞(E, ρ) = Q(E, ρ) andP∓∞(E, ρ) = 0 hence

1 − β

2
9∓∞(E, ρ) = 1 − β

2
9(E, ρ)

1 + β

2
9∓∞(E, ρ) = 0. (111)

Finally, we observe that if in equation (107) the speed of lightc approaches infinity,
we obtain the relation∑

K

8bK(r)8
+
b+K(ρ

′) = δ(r − ρ′)
1 + β

2
. (112)

This relation looks similar to equation (108) but differs from the latter because now elements
of the matrixb may be arbitrary (although finite) and the lower components of the functions
{8bK} and{8b+K} vanish identically. Equation (112) shows that in the non-relativistic limit
the basis set generated by the boundary-value problem in the interior of the reaction volume
V is also complete on the boundaryS, irrespective of values of matrix elements of the
matrix b, as long as the latter are finite. This explains why the construction of theR-matrix
theories for the Schrödinger equation does not encounter any difficulties. It is a simple
task to obtain non-relativistic limits of all formulae derived above and to verify that they
coincide with corresponding well known non-relativistic expressions provided one defines a
matrix of the non-relativistic boundary condition constantsbN = b − K [20]. In particular
one finds that in the non-relativistic limit, the Kapur–Peierls functionχb vanishes on the
reaction surface but has there a non-vanishing normal derivative which agrees with the result
of Kapur and Peierls [1].

5. Discussion

We are now prepared to obtain the relativistic generalizations of the Wigner and Kapur–
Peierls theories. Both theories are particular cases of the general approach exposed in
sections 3 and 4. In the Wigner theory the matrixb is taken to be Hermitian†, b+ = b,
which gives

Ĥ+
b = Ĥb 8⊥

bK(E, r) = 8bK(E, r) E∗
bK = EbK (113)

† In practically all papers on the WignerR-matrix theory the matrixb was chosen to be real and diagonal as
suggested by Teichmann T and Wigner E P 1952Phys. Rev.87 123. Although this restriction may simplify some
applications, it is not necessary and an application of theR-matrix theory with non-diagonalb was presented by
Zvijac D J, Heller E J and Light J C 1975J. Phys. B: At. Mol. Phys.8 1016, section 5.
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and

Rb(E, ρ) = h̄2

2mρ

∑
K

FbK(ρ)F+
bK(ρ)

EbK − E
− b

b2 + (2mρc/h̄)2I
. (114)

The scattering matrixS(E) may now be obtained using equations (78) and (114).
In the Kapur–Peierls theory, the matrixb is chosen in such a way that the Bloch operator

L̂b , when acting on the wavefunction9 of the scattered particle, cancels its outgoing part
on the reaction surfaceS. In other words, the expression

L̂b9(E,ρ) = η
δ(r − ρ)

ρ
Θ(n)

[
− h̄2

2mρ
bP(E, ρ)+ ch̄Q(E, ρ)

]
+(1 − η)

δ(r − ρ)

ρ
Θ̃(n)

[
2mρc2b−1Q(E, ρ)− ch̄P(E, ρ)

]
(115)

cannot contain terms proportional to exp(+ikρ). Referring to equations (31) and (32) we
find that this condition will be satisfied if the matrixb is

b = L(E, ρ) (116)

where the diagonal matrixL(E, ρ) has been defined by equation (39). With this choice of
b the termsRb

[
L − b

]
and

[
L − b

] Rb in equation (78) vanish and we get

S(E) = O−1(E, ρ)I(E, ρ)+ 2iε

(
2mρc

h̄

) √
E −mc2

E +mc2
O−1(E, ρ)Rb(E, ρ)O−1(E, ρ)

(117)

with Rb(E, ρ) given by equation (104) andb by equation (116). Equation (117) is the
relativistic generalization of the famous Kapur–Peierls formula [1].

Next, we assume an attitude towards the papers of Rosenthal [17] and Halderson
[19]. There are several errors in [17]. The functionψ(−)

λ defined by Rosenthal is an
eigenfunction of the operator−β(Σ · L + 1) belonging to the eigenvalue−κ andnot κ as
he asserted†. The introduction ofψ(−)

λ is needless and misleading: for a given pairκm, all
solutions, irrespective of whether they belong to positive or negative energies, are of the
form ψ

(+)
λ . Therefore, in [17] all functionsψ(−)

λ should be removed and all superscripts
(+) should be omitted. Next, if one truncates the basis{ψλ} to positive energy functions, as
Rosenthal did, it is obvious that such a set cannot be complete anywhere. If one uses a set
containing functions belonging to positiveand negative energies (see above), then such a
set must be complete forr < ρ since it has been generated by a Hermitian boundary-value
problem. Rosenthal’s observation that the basis (including positiveand negative energy
eigenfunctions) was incompleteon the reaction surfacewas correct but his conclusion that
this made derivation of theR-matrix theory for the Dirac equation impossible was wrong.
We have shown above, by construction, that such a theory does exist. In spite of the errors
and the incorrect conclusion Rosenthal’s finding about the incompleteness of the relativistic
basis set on the reaction surface should be appreciated, however.

Halderson [19] attempted to prove that theR-matrix theory was applicable to the Dirac
equation, but he derived the theory only for the specific caseb = 0. Moreover, comparison
of the argumentation used in [19] with the proof presented here shows that even in this
case Halderson’s proof was non-rigorous because that author assumed the completeness

† Notice that Rosenthal’s definition ofκ, the first unnumbered equation following equation (2) of [17], is incorrect
since a matrix factor−β is missing; this results in disagreement with relations betweenκ, l and l̄ given below the
second unnumbered equation of that paper.
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of the basis on the surface in the subspace of upper components without proving it. In
particular, interchange of the operations limr→ac and

∑
λ which he admitted when arriving

to equation (13) of his paper, although exceptionally possible in the very specific case
discussed in that paper, was just a source of errors in previous relativistic generalizations of
the Wigner theory to more general boundary conditions [3, 4]. It is clear from the context
and from errors† occurring in the paragraph preceding equation (13) of [19] that Halderson
was not aware of exceptionality of this case.

Finally, the following remark may be useful. It should be emphasized that the source of
the term−b/(b2 + (2mρc/h̄)2I) appearing in equations (103), (104) and (114) is different
from the source of the Buttle correction [27] used in applications of theR-matrix theory.
In applications one must always work withfinite sets of functions. Truncating theR-matrix
basis one obtains the set which is incomplete in thereaction volumeand to compensate the
error introduced in theR-matrix expansion by the truncation one uses the Buttle correction.
The term derived in the present paper is due to the incompleteness of theinfinite relativistic
R-matrix basis on thereaction surface. This phenomenon does not occur (cf equation (112))
in the non-relativistic theory.
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